BNL, October 8th, 2012

A Quick Tour of the
EIC Physics Case

Marco Stratmann
BROOKHIAEN

NATIONAL LABORATORY

marco@bnl.gov




A’rhis talks can only present some highlights of the EIC program

The EIC Science case: . GlUOﬂS and the

areport on the joint

BNUINTALab program  distributions, p

Institute for Nuclear Theory ® University
September 13 to November 19, 2010

Editors:
D. Boer
Rijksuniversiteit Groningen, The Netherlands
M. Diehl

Deutsches Elektronen-Synchroton DESY,

R. Milner
Massachusetts Institute ofTedvnhg,,

in the absence of the EIC white paper,
| refer to the oo+ pages INT report

arXiv:1108.1713

presented results are
mainly due to the efforts of
the EIC task force at BNL
and other supporters of an EIC



inclusive deep-inelastic scattering in ep and eA
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through the available c.m.s. energy ~‘ X : momentum fraction of probed parton

[J want to measure up to large Q2: exchange of W,Z bosons contributes

¢ need to determine x,Q2 from hadronic final-state (lepton can turn into neutrino)

[J kinematics obscured by additional photon radiation off the lepton

¢ need Monte Carlo tools to control; cannot be separated from detector acceptance

[J need to measure also the polarization (and luminosity) very well
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¢ gain two decades in x -> get into the region where gluons and sea quarks dominate
e cover large Q2 range for each x -> study “scaling violations” -> gluon density

e can reach large Q2 (at medium-to-large x) -> access to electroweak effects
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- expect to see saturation in eA at
} 100-200 x higher values of x than in ep

® presence of (large enough) saturation scale Qs
allows one to perform quant. calculations
in well-defined framework (*CGC")

e expect “physics at high gluon density”
to be universal; can verify this at an EIC!
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semi-inclusive probes in ep and eA
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extension of double-differential DIS cross section to a
Z_ do

(in general) six-fold diff. cross section -
dxdQ? dz d¢n dp

Z : energy fraction of observed hadron

pTh: its transverse momentum

(I): azimuthal angle of hadron

(I)s: azimuthal angle of spin vector

J

[ prand ¢ integrated cross section is simplest but versatile SIDIS observable

can be used for flavor separation (needs 1's and K’s) and determinations of fragmentation functions

[J azimuthal modulations lead to transverse momentum dependent PDFs (TMDs)

[J hadron-hadron correlations in eA give clean access to saturation physics

all SIDIS measurements require good particle ID in broad kinematic regime
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physics of TMDs
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specific example: Sivers function
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specific example: Sivers function

* slew of different TMDs can be measured by selecting certain ¢ modulations

example: Sivers function
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unintegrated PDF @ Sivers function
important link to physics of * measures spin-orbit correlations
gluon saturation at small x e link to parton orbital motion (only through models)

e reveals non-trivial aspects of QCD color gauge invariance

Sivers asymmetry has been observed only in the valence quark regime
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prospects for Sivers related measurements

extracted u-valence density so far unmeasured gluon Sivers fct
0 can be probed in D-meson correlations

observable: azimuthal asymmetry
correlating the total kt of the D-meson pair
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* corresponding measurement in dAu at RHIC one of the best hints for saturation right now

* much cleaner probe in eA: no spectator background from electron side
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what to measure

e one of the surprises at HERA: large fraction of diffractive events (15% of total DIS rate)

//e' close relative of DIS

need in addition

€ : momentum transfer squared

X (My) X : mass of diffractive final-state

variables can be traded for 8 and xp

Largest rapidity where Xgj = B Xp

gap in event
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breakup of A

diffractive event characterized by large rapidity gap (angular region w/o particle flow)
mediated by color neutral exchange (e.g. colorless combination of 2 or more gluons)
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what to measure

e one of the surprises at HERA: large fraction of diffractive events (15% of total DIS rate)

//e' close relative of DIS

need in addition

€ : momentum transfer squared

X (My) «\‘ My : mass of diffractive final-state

variables can be traded for 8 and xp

Largest rapidity where Xgj = B Xp

gap in event
or

>
L <l

Y (My)
breakup of A

diffractive event characterized by large rapidity gap (angular region w/o particle flow)
mediated by color neutral exchange (e.g. colorless combination of 2 or more gluons)

terminology: coherent incoherent

proton [ heavy nucleus stays intact proton [ heavy nucleus breaks up

® ep: detect intact protons in forward detectors critical: IR design

® eA: need to tag on emitted neutrons from nuclear breakup (shown to be possible with near 100% efficiency)



diffractive physics - why relevant?

A Light
Intensity

0; ~ 1/(kR)

| small angle scattering

recall: diffractive pattern in optics
position of minima O; related to size R of screen
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ratio (eAu/ep) (1/0tot) dogiff/dMZ (GeV?)

ratio of diffractive to total cross section

e black disc limit characterized by Udiff/atot = 1/2

(recall: HERA sees =1/7 in ep)

—large fraction of diffractive event is unambiguous signature for reaching the saturated limit

estimates for fraction of low-mass coherent diffraction in ep and eA at EIC kinematics:
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e black disc limit characterized by adiff/atot = 1/2
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exclusive vector meson production

® unique probe - allows to measure momentum transfer t in eA diffraction
2 2
t = (pa —Pa’)” = (PvM + Pe’ — Pe)

in general, one cannot detect the outgoing nucleus and its momentum
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® unique probe - allows to measure momentum transfer t in eA diffraction

t = (pa —Pa )’ = (PvM + Py’ — Pe)?

in general, one cannot detect the outgoing nucleus and its momentum  *
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® unique probe - allows to measure momentum transfer t in eA diffraction
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spatial distribution of gluons through diffraction

goal: going after the source distribution of gluons through Fourier transform of do/dt



spatial distribution of gluons through diffraction

goal: going after the source distribution of gluons through Fourier transform of do/dt

find: e typical diffractive pattern for coherent (non-breakup) part

e as expected, J/V less sensitive to saturation effects than larger ¢ meson
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how does the imaging work - what do we learn?

idea: momentum transfer t conjugate to transverse position (impact parameter b)

— expect small t relevant for large b and vice versa Ll e a
e coherent part probes “shape of black disc” < w r s
* incoherent part (dominant at large t) sensitive S, - s V_zy[fm]
to "lumpiness” of the source (fluctuations, hot spots, ...) xm * « . o !

— impact on our understanding of initial conditions of heavy ion collisions
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exclusive processes and GPDs

another class of (related) processes for parton imaging

need to introduce concept of
generalized parton distributions (GPDs)

GPDs depend on:

x+§/ \ x—5 * momentum transfert
— ~——

e resolution scale Q

s N v P»%  elong. momentum before and

{ after the scattering: x, &

= interference between different nucleon states (not a probability)
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GPDs depend on:
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e resolution scale Q
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= interference between different nucleon states (not a probability)
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path to spatial imaging of partons through GPDs

recall: standard PDFs do not resolve transverse positions in the nucleon

fast moving nucleon turns into a "pizza’ but transverse size remains = 1 fm

4 : : A
compelling questions

* how are quarks and gluons spatially distributed

* how do they move in the transverse plane

* do they orbit and do we have access to spin-orbit correlations
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semi-inclusive DIS / exclusive processes
dx

/ dsz\ // d%br
f(x) F(t)

parton densities form factor



path to spatial imaging of partons through GPDs

recall: standard PDFs do not resolve transverse positions in the nucleon

fast moving nucleon turns into a "pizza’ but transverse size remains = 1 fm

(. )

compelling questions

* how are quarks and gluons spatially distributed

* how do they move in the transverse plane

\0 do they orbit and do we have access to spin-orbit correlations)

Wigner function high-level connection
5-D X ij bT measurable ?

important in other branches of Physics
/ d2ly \/d2kT
— t — 0

not related by

X kT Fourlertransf X bT H<X 0 t) H(X 5’ )
3-D transv. mom. dep. PDF impact par. dep. PDF generalized PDF
semi-inclusive DIS exclusive processes
/ dx
/deT /dsz
1-D f(X) F(t)

parton densities form factor



roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z
4 GPDs per flavor, e.q., f Eemlﬁz (p',s'|qg(—=) W7+q(§)|p, 8) 2+ =0,2=0

1

z
2
= H%u(p, 5’)'y+u(p, s)+ Elu(p’,s") 5

‘o,
mpa (p" — p)au(p, s)



roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z
4 GPDs per flavor, e.q., f Eemlﬁz (p',s'|qg(—=) W7+q(§)|p, 8) 2+ =0,2=0

1

2
2
= | H%u(p', ")y ulp, s)|+- £ a(p, s) 5

recover PDFs in limit

s=5.6=0,t=0

‘o,
mpa (p" — p)au(p, s)




roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z z
4 GPDs per flavor, e.q., Il Eemlﬁz (p', S’]g(—§) W7+q(§)|p, 8) 2+ =0,2=0

i N /
= [H ' s ulp, s)H BT alp, ') 5—0 " (0 = plau(p, 5)
o (IRs p
recover PDFs in limit no PDF limit; involves helicity flip
s = 3’, £E=0,t=0 indicator of OAM; key part in Ji's sum rule
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roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z z
4 GPDs per flavor, e.q., Il Eemlﬁz (p', S’]g(—§) W7+q(§)|p, 8) 2+ =0,2=0

— N /
= [ H a(@', )7 ulp, $)[HE a(p', s') 5—0 (b = p)at(p; 5)
. p
recover PDFs in limit no PDF limit; involves helicity flip
s = S,, £E=0,t=0 indicator of OAM; key part in Ji's sum rule

» perform Fourier transformation to obtain b-space image p

Sp
_]/;
\
/\______
\
v O
\
/
; O\

e.g. q(x,b*) ~ /der_ibAHq(sc,g =0,t = —A?) where A =p —p T o

2 X

gives distribution of quarks with

_.;’_ by ® longitudinal momentum fraction x
e transverse distance b from proton center



roadmap for transverse imaging of the proton

» obtain GPDs from global analysis of DVCS and vector meson data in ep scattering

slew of angular & polarization observables (+ use of positron beams) to disentangle H and E

dz= . - z z
4 GPDs per flavor, e.q., Il Eemlﬁz (p', S’](j(—§) W7+q(§)|p, 8) 2+ =0,2=0

1
— —
= [H ' s ulp, s)H BT alp, ') 5—0 " (0 = plau(p, 5)
. p
recover PDFs in limit no PDF limit; involves helicity flip
s = S,, £E=0,t=0 indicator of OAM; key part in Ji's sum rule

» perform Fourier transformation to obtain b-space image p

e.g. q(x,b*) ~ /der_ibAHq(sc,f =0,t = —A?) where A =p —p T\

;‘/’,o \\\‘

gives distribution of quarks with o
by ® longitudinal momentum fraction x
.;. e transverse distance b from proton center
® need to resolve small distances in proton '— need do/dt in larger

challenges:

* no diffractive pattern in accessible t range | trangethanin eA




example: DVCS - what do we know?

® best understood and worked out theoretically
® x is integrated out in scattering amplitude

e { is related to usual Bjorken x of DIS: & = xg;j/ (2-Xg))

® large number of angular and polarization observables

® interferes with genuine QED “Bethe-Heitler” process



example: DVCS - what do we know?

® best understood and worked out theoretically
® x is integrated out in scattering amplitude
o ¢ is related to usual Bjorken x of DIS: & = xg;/ (2-Xa))

® large number of angular and polarization observables

e interferes with genuine QED "Bethe-Heitler” process

L L] T II T L LJ LJ LELEL 'I L]
Current DVCS data at colliders:
10 3 —0O ZEUS-total xsec O H1-total xsec

- ® ZEUS-do/dt = H}:gu/dt

DVCS measurements [ e
- Current DVCS data at fixed targets:

past-present-future [ A HERMES-A; A HERMES-Acu

. A HERMES'ALu.AUL. ALL
A HERMES-Ayr * HallA- CFFs

10 2 ¥ CLAS-Aw ¥ CLAS-AyL
N’-\ - .
> - Planned DVCS at fixed targ.:
() - 202 COMPASS- do/dt, Acsu, AcsT
() I JLAB12- do/dt, Ay, Ay, Al
Y

soon: precise imaging

O HERA results on GPDS /
in valence region _

very much limited by
lack of statistics

~ plenty of opportunities at an EIC | B gk

J to map out gluon and sea-quark GPDs ; ,9"’ : ,;;‘i“ &

- 1 L B i
! | " | J
-4 -3 2 1
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects
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DVCS - how well does it work out?

examples of simulated DVCS data including acceptance cuts and resolution effects
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DVCS - what can we learn?

-0.5

[ EIC pseudo data Q2 =44 GeV2
0.5p-~

20 GeV on 250 GeV xg =8.2104
s, fLdt =100 fb-1 t=-0.25GeV2 .-
\C\\ ,//’/
N 7
\\ N / /’

» unpolarized DVCS mainly sensitive to GPD H

» unknown GPD E from angular asymmetries
with transversely polarized protons

7= different assumptions for GPD E
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DVCS

- what can we learn?

1.5

1.0
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Y B eGR4 0oV | | N
20 GeV on 250 GeV Xg = 8.2 104 » unpolarized DVCS mainly sensitive to GPD H
[">~. [Ldt =100 fb-1 t=-0.25 GeV2 .-
- \\C\ / » unknown GPD E from angular asymmetries
S — - with transversely polarized protons
_ NN P .
) el e 7= different assumptions for GPD E
0 1 2 3 4 5
¢ (rad) v
global QCD fits to data & Fourier transform to b space

quarks (unpolarized proton) v quarks (transversely pol. proton)
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[ x=10°
1.5_- by = 0 fm 1
[ Q%= 4GeV? |
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DVCS - what can we learn? - cont'd

quarks (unpolarized proton)

density of partons in transverse plane

1.5

€
= 0
>
o

quarks (transversely pol. proton)

0.0' 1 PR B PPN B

15 10 05 00 05
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' can resolve shift
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DVCS

qua rks (unpolarlzed proton)

density of partons in transverse plane

what can we learn? - cont'd

quarks (transversely pol. proton)

& 1.5}¢
S
G 1.0}
o
X
g 05
g
O-O'.l....l....l....

by (fm)

15 10 05 00 05 1.0 15

v q(x=10256,Q2 = 4 GeV?)

15

I N

- - - +_

b, (fm)

o;ﬁllllh

q"(x=107,b,Q% = 4 GeV?) v

shlf't due to GPD E 1
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DVCS - what can we learn? -

quarks (unpolarized proton)

cont'd

quarks (transversely pol. proton)

x=10°
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-1 -0 5 0 0 5 1
b, (fm)

1.5

| x =103 -
- bx=0fm 1 & 1.5f bx = 0 fm
I Q%= 4GeV? ] £ Q%=4GeV?
& 1.0}
1o

e A
[ icing on the cake:
— with GPDs H and E determined, one can access ]
1.5 ‘generalized form factors’ by taking x moments, e.g.,| 1

o 1 Ji's sum rule

c
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gluon imaging through J/¥ production

® DVCS permits determination of gluon GPD through Q2 evolution (similar to DIS)

e can be further improved by adding vector meson observables

Distribution of gluons
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take away message

an EIC offers many unique opportunities
to greatly advance our understanding of
the structure of nucleons and nuclei

P orbitalg~

precision studies of PDFs, TMDs, and GPDs
will lead to the most comprehensive
picture of the nucleon ever:
its flavor, spin, and spatial structure



take away message

an EIC offers many unique opportunities
i\, _ to greatly advance our understanding of
the structure of nucleons and nuclei

» orbitalg~
motion

precision studies of PDFs, TMDs, and GPDs
will lead to the most comprehensive
picture of the nucleon ever:
its flavor, spin, and spatial structure

requirements

» large enough c.m.s. energy to explore small x region

» sufficient luminosity for multi-dimensional binning, ... YN

» sufficient control of systematic uncertainties

» state-of-the-art detector systems, well intfegrated into IR



take away message

an EIC offers many unique opportunities
to greatly advance our understanding of
the structure - jucleons and nuclei
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» sufficient luminosity for multi-dimensional binning, ... YN

» sufficient control of systematic uncertainties

» state-of-the-art detector systems, well intfegrated into IR



